skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grant, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ellermeier, Craig D (Ed.)
    ABSTRACT Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitute the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased the MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full-length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.IMPORTANCESpatially organizing biosynthetic pathway enzymes is a promising strategy to increase pathway throughput and yield. Bacterial microcompartments (MCPs) are proteinaceous organelles that many bacteria natively use as a spatial organization strategy to encapsulate niche metabolic pathways, providing significant metabolic benefits. Encapsulating heterologous pathways of interest in MCPs could confer these benefits to industrially relevant pathways. Here, we investigate the role of signal sequences, short domains that target proteins for encapsulation in MCPs, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterize two novel signal sequences on structural proteins, constituting the first Pdu signal sequences found on structural proteins rather than enzymes, and perform knockout studies to compare the impacts of enzymatic and structural signal sequences on MCP assembly. Our results demonstrate that enzymatic and structural signal sequences play critical but distinct roles in Pdu MCP assembly and provide design rules for engineering MCPs while minimizing disruption to MCP assembly. 
    more » « less
    Free, publicly-accessible full text available May 27, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. This mixed methods study investigates student learning outcomes from undergraduate STEM and non-STEM courses, employing farm-situated place-based experiential learning (PBEL) modules at a private liberal arts university in the Midwest. Given that these courses occurred during both COVID-19 and U.S. police brutality protests, this study critically interrogates the influence of this "dual pandemic" on student meaning-making. The study examines how student scores on environmental science literacy, civic-mindedness, sense of place, and scientific reasoning measures changed throughout the PBEL courses. With the exception of scientific reasoning, change in each measure was statistically significant (p<0.001). A stepwise linear regression determined whether any measures predicted civic-mindedness. Environmental science literacy and university place attachment were found to be predictive of civic-mindedness. Focus group data revealed how PBEL modules affected student learning outcomes Forand how the dual pandemic affected student civic-mindedness and place attachment. 
    more » « less
  4. Abstract Surface deformation plays a key role in illuminating magma transport at active volcanoes, however, unambiguous separation of deep and shallow transport remains elusive. The Socorro Magma Body (SMB) lacks an upper crustal magma transport system, allowing us to link geodetic measurements with predictions of numerical models investigating rheologic heterogeneities and magma‐mush interaction in the mid‐/lower crust. New InSAR observations confirm that a pattern of central surface uplift surrounded by a region of subsidence (previously coined “sombrero” deformation) has persisted over >100 years at the SMB. Our models suggest this pattern may reflect the presence of a large (>100 km width), weaker‐than‐ambient, compliant region (CR) surrounding the mid‐crustal magma body. Interactions between a pressurizing (e.g., due to melt injection and/or volatile exsolution) sill‐like magma body and CR drive the sombrero pattern, depending on both viscoelastic relaxation and pressurization timescales, explaining its rare observation and transient nature. 
    more » « less
  5. Abstract Iron garnets that combine robust perpendicular magnetic anisotropy (PMA) with low Gilbert damping are desirable for studies of magnetization dynamics as well as spintronic device development. This paper reports the magnetic properties of low‐damping bismuth‐substituted iron garnet thin films (Bi0.8Y2.2Fe5O12) grown on a series of single‐crystal gallium garnet substrates. The anisotropy is dominated by magnetoelastic and growth‐induced contributions. Both stripe and triangular domains form during field cycling of PMA films, with triangular domains evident in films with higher PMA. Ferromagnetic resonance measurements show damping as low as 1.3 × 10−4with linewidths of 2.7 to 5.0 mT. The lower bound for the spin‐mixing conductance of BiYIG/Pt bilayers is similar to that of other iron garnet/Pt bilayers. 
    more » « less
  6. Training the future synthetic biology workforce requires the opportunity for students to be exposed to biotechnology concepts and activities in secondary education. Detecting Wolbachia bacteria in arthropods using polymerase chain reaction (PCR) has become a common way for secondary students to investigate and apply recombinant DNA technology in the science classroom. Despite this important activity, cutting-edge biotechnologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-based diagnostics have yet to be widely implemented in the classroom. To address this gap, we present a freeze-dried CRISPR-Cas12 sensing reaction to complement traditional recombinant DNA technology education and teach synthetic biology concepts. The reactions accurately detect Wolbachia from arthropod-derived PCR samples in under 2 h and can be stored at room temperature for over a month without appreciable degradation. The reactions are easy-to-use and cost less than $40 to implement for a classroom of 22 students including the cost of reusable equipment. We see these freeze-dried CRISPR-Cas12 reactions as an accessible way to incorporate synthetic biology education into the existing biology curriculum, which will expand biology educational opportunities in science, technology, engineering, and mathematics. 
    more » « less
  7. Abstract Rossby wave breaking (RWB) can be manifested by the irreversible overturning of isentropes on constant potential vorticity (PV) surfaces. Traditionally, the type of breaking is categorized as anticyclonic (AWB) or cyclonic (CWB) and can be identified using the orientation of streamers of high potential temperature (θ) and lowθair on a PV surface. However, an examination of the differences in RWB structure and their associated tropospheric impacts within these types remains unexplored. In this study, AWB and CWB are identified from overturning isentropes on the dynamic tropopause (DT), defined as the 2 potential vorticity unit (PVU; 1 PVU = 10−6K kg−1m2s−1) surface, in the ERA5 dataset during December, January, and February 1979–2019. Self-organizing maps (SOM), a machine learning method, is used to cluster the identified RWB events into archetypal patterns, or “flavors,” for each type. AWB and CWB flavors capture variations in theθminima/maxima of each streamer and the localized meridionalθgradient (∇θ) flanking the streamers. Variations in the magnitude and position of ∇θbetween flavors correspond to a diversity of jet structures leading to differences in vertical motion patterns and troposphere-deep circulations. A subset of flavors of AWB (CWB) events are associated with the development of strong surface high (low) pressure systems and the generation of extreme poleward moisture transport. For CWB, many events occurred in similar geographical regions, but the precipitation and moisture patterns were vastly different between flavors. Our findings suggest that the location, type, and severity of the tropospheric impacts from RWB are strongly dictated by RWB flavor. Significance StatementLarge-scale atmospheric waves ∼15 km above Earth’s surface are responsible for the daily weather patterns that we experience. These waves can undergo wave breaking, a process that is analogous to ocean waves breaking along the seashore. Wave breaking events have been linked to extreme weather impacts at the surface including cold and heat waves, strong low pressure systems, and extreme precipitation events. Machine learning is used to identify and analyze different flavors, or patterns, of wave breaking events that result in differing surface weather impacts. Some flavors are able to generate notable channels of moisture that result in extreme high precipitation events. This is a crucial insight as forecasting of extreme weather events could be improved from this work. 
    more » « less